
1 Potential Plots:

Figure 1: This plot shows how the energy of a physical system depends on two variables (called
scalar fields, ϕ0 and ϕ1). These fields interact in a way that creates a kind of ”landscape” —
some areas are higher (more energy), others are lower (less energy). The thick purple line marks
a special path where the system prefers to stay, because it’s the most stable. The dashed black
lines and gray grid help compare this path to earlier, simpler predictions.
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Figure 2: This series of plots shows how the system’s energy landscape changes with temperature.
At low temperature, the system has a special direction (dashed line) along which it is balanced.
But as the temperature rises, this balance disappears. One of the fields (representing the Higgs
particle) drops to zero, while the other field (called the dilaton) shifts to a new preferred value
that grows with temperature. This reflects how the system reacts to heat, changing its internal
structure.
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2 Time Evolution Simulations Plots:
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Figure 3: This plot shows how one of the fields in the model (called the dilaton, ϕ0) changes over
time, along with a related quantity from cosmology known as the Hubble parameter (H), which
describes the expansion rate of the Universe. Over time, ϕ0 settles into a stable value, meaning
the system reaches a kind of balance. The bottom plot zooms in on how ϕ0’s rate of change slows
down, confirming this stabilization. Time is shown on a logarithmic scale to capture both early
and late behavior.
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Figure 4: This plot shows how the two fields in the model (ϕ0 and ϕ1) and the Universe’s expansion
rate (Hubble parameter, H) change shortly after the beginning of the simulation. In this example,
the starting point for ϕ0 is based on how the system behaves at high temperature. This setup
helps illustrate the early behavior of the fields. Only the most relevant, unstable scenario is shown
for clarity.
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3 Cosmic Inflation Plots:

Figure 5: This plot shows how one important inflation prediction, r0.002, varies with another key
parameter, ns, depending on how the end of inflation is defined. Different points correspond to
different criteria for ending inflation, marked by numbers above them. The shaded lines represent
the latest limits from cosmic microwave background observations by the Planck satellite, helping
to see which scenarios agree with current data.
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Figure 6: These plots show how changing two parameters, called ξ0 and p, affects key predictions
of the inflation model: the tensor-to-scalar ratio (r0.002) and the spectral index (ns). A specific
condition sets the end of inflation, chosen so that ns is close to 0.97, which matches observations
of the early Universe.
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